Reconfiguring Cache Associativity: Adaptive Cache Design for Wide-Range Reliable Low-Voltage Operation Using 7T/14T SRAM

نویسندگان

  • Jinwook Jung
  • Yohei Nakata
  • Shunsuke Okumura
  • Hiroshi Kawaguchi
  • Masahiko Yoshimoto
چکیده

This paper presents an adaptive cache architecture for wide-range reliable low-voltage operations. The proposed associativityreconfigurable cache consists of pairs of cache ways so that it can exploit the recovery feature of the novel 7T/14T SRAM cell. Each pair has two operating modes that can be selected based upon the required voltage level of current operating conditions: normal mode for high performance and dependable mode for reliable low-voltage operations. We can obtain reliable low-voltage operations by application of the dependable mode to weaker pairs that cannot operate reliably at low voltages. Meanwhile leaving stronger pairs in the normal mode, we can minimize performance losses. Our chip measurement results show that the proposed cache can trade off its associativity with the minimum operating voltage. Moreover, it can decrease the minimum operating voltage by 140 mV achieving 67.48% and 26.70% reduction of the power dissipation and energy per instruction. Processor simulation results show that designing the on-chip caches using the proposed scheme results in 2.95% maximum IPC losses, but it can be chosen various performance levels. Area estimation results show that the proposed cache adds area overhead of 1.61% and 5.49% in 32-KB and 256-KB caches, respectively. key words: low-voltage adaptive cache design, reconfiguring associativity, dynamic voltage frequency scaling, 7T/14T SRAM

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A 40-nm Resilient Cache Memory for Dynamic Variation Tolerance Delivering ×91 Failure Rate Improvement under 35% Supply Voltage Fluctuation

This paper presents a resilient cache memory for dynamic variation tolerance in a 40-nm CMOS. The cache can perform sustained operations under a large-amplitude voltage droop. To realize sustained operation, the resilient cache exploits 7T/14T bit-enhancing SRAM and onchip voltage/temperature monitoring circuit. 7T/14T bit-enhancing SRAM can reconfigure itself dynamically to a reliable bit-enha...

متن کامل

15th Int'l Symposium on Quality Electronic Design

This paper presents a resilient cache memory for dynamic variation tolerance in a 40-nm CMOS. The cache can perform sustained operations under a large-amplitude voltage droop. To realize sustained operation, the resilient cache exploit 7T/14T bit-enhancing SRAM and on-chip voltage/temperature monitoring circuit. 7T/14T bitenhancing SRAM can reconfigure itself dynamically to a reliable bit-enhan...

متن کامل

0.5-V 4-MB Variation-Aware Cache Architecture Using 7T/14T SRAM and Its Testing Scheme

This paper presents a novel cache architecture using 7T/14T SRAM, which can improve its reliability with control lines dynamically. Our proposed 14T word-enhancing scheme can enhance its operating margin in word granularity by combining two words in a low-voltage mode. Furthermore, we propose a new testing method that maximizes the efficiency of the 14T word-enhancing scheme. In a 65-nm process...

متن کامل

A Novel Cache-Utilization Based Dynamic Voltage Frequency Scaling (DVFS) Mechanism for Reliability Enhancements

We propose a cache architecture using a 7T/14T SRAM [1] and a control mechanism for reliability enhancements. Our control mechanism differs from the conventional DVFS methods, which considers not only the CPI behaviors but also the cache utilizations. To measure cache utilization, a novel metric is proposed. The experimental results show that our proposed method achieves thousand times less bit...

متن کامل

SRAM CELL BASED ON CNTFET AT 32nm TECHNOLOGY

The SRAM which functions as the cache for system-on-chip is vital in the electronic industry. Carbon Nanotube Field Effect Transistor (CNFET) is used for high performance, high stability and low-power circuit designs as an alternative material to silicon in recent years. Therefore Design of SRAM Cell based on CNTFET is important for Low-power cache memory. In cells, the bit-lines are the most p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 96-C  شماره 

صفحات  -

تاریخ انتشار 2013